

Geological Mapping along left bank of the River Alaknanda between Marwadi Bridge and Vishnuprayag

Uttarakhand Landslide Mitigation and Management Centre (ULMMC)

List of Figures

Figure 1: Location map of Joshimath.
Figure 2: Regional geological map of the Joshimath area (Geological Survey of India, 2024)
Figure 3: Demarcating Lithology and surface feature Boundary using TS as Non-prism points from the
right bank of the river Alaknanda River.
Figure 4: Geological Plan and L-section of Left Bank of the River Alaknanda between Marwadi Bridge
and Vishnuprayag.
Figure 5: Field Photograph is showing biotite - gneiss evident along Alaknanda River, Near Marwadi
Bridge Joshimath.
Figure 6: Field photograph is showing foliation plane (along geological hammer) of biotite - gneiss
outcrop on left bank of the river Alaknanda, at Vishnuprayag
Figure 7: Stereographic projections major discontinuity of left bank of River Alaknanda between
Marwadi Bridge and Vishnuprayag
Figure 8: Rose diagram showing trends of major discontinuity along left bank of River Alaknanda
between Marwadi Bridge and Vishnuprayag10
Figure 9: Field photograph showing (a) and (b) landslide zone 1, and (c) boulders and debris material
of the affected zone
Figure 10: Filed photograph showing landslide zone 3, left bank of River Alaknanda, Joshimath 13
Figure 11: Field photograph showing landslide zone 4 along left bank of river Alaknanda between
Marwadi Bridge and Vishnuprayag, Joshimath14
Figure 12: Field photograph showing landslide zone 5along left bank of River Alaknanda, Joshimath. 15
Figure 13: Filed photograph of the landslide zone 06, along left bank of the River Alaknanda16
Figure 14: Field photograph showing landslide zone 7, along left bank of River Alaknanda, near
Vishnupryag17
2
d m
7
47
Or = = 1 C
Vishnupryag
41.4

Contents

1.0 INTRODUCTION:	4
2.0 GENERAL GEOLOGY	5
3.0 GEOLOGICAL MAPPING	6
6.0 LANDSLIDES	11
7.0 CONCLUDING REMARKS	18
References	19
Annexure 1	20
Annexure 2	26
Annexure 3.	AND MANAGEMENT CENTRAL PROPERTY CENTRAL

1.0 INTRODUCTION:

The Higher Himalayan region is frequently affected by natural hazards such as earthquakes, landslides, subsidence, glacier bursts, and flash floods. Joshimath, situated in the tectonically active young fold Himalayan mountain range, has also experienced subsidence issues since long, which was accelerated during January 2023. The town has a documented history of landslides, subsidence, and flash floods, with numerous cracks appearing in roads, walls, and house floors over time (Bera et al., 2023).

Joshimath is located in Chamoli district of Uttarakhand State of the India (**Figure1**). On January 2, 2023, Joshimath experienced significant ground subsidence, accompanied by a sudden burst of new water seepage in the Marwari area. This event necessitated the evacuation of approximately 1,000 residents from unsafe areas and vulnerable buildings (Bera et al., 2023). Joshimath is built on a substantial accumulation of old landslide debris and moraine deposits, with overburden material exceeding 200 meters in thickness in some areas (Geological Survey of India, 2024).

The recent subsidence was confined to a linear array from north-northwest (NNW) to south-southeast (SSE), stretching from Marwari to Sunil ward. The slope from Auli to Marwari is characterized by numerous natural springs, indicating saturation and the presence of perched water bodies, which exacerbate slope instability by increasing pore pressure. Notably, the Narsingh Mandir structure remained unaffected during this subsidence event. The new seepage at Marwari was linked to a perched water body (Geological Survey of India, 2024).

In response to letter no. 89/19/ULMMC/2024-25 dated 24th, May 2024, a field visit was carried out between 27th May 2024 to 6th June 2024 by a team of ULMMC experts, including Dr. Raghuveer Negi (Geologist) and Mr. Deepak Bhatt (Surveyor) in order to conduct large scale geological mapping along left bank of the River Alaknanda between Marwadi Bridge and Vishnuprayag. In this field USDMA consultants (Mr. Ashish Kaushik, Mr. Yogesh Uniyal, and Mr. Vivek Tiwari) joint control room Joshimath, was actively involved in geological mapping.

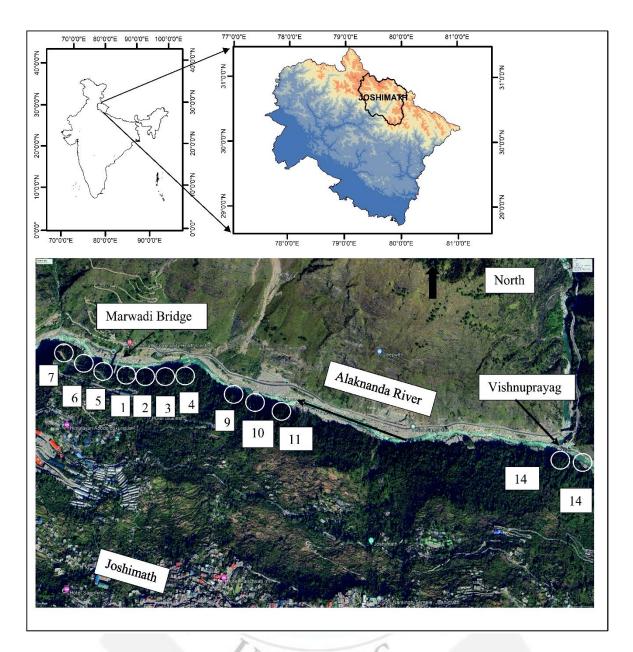


Figure 1: Location map of Joshimath.

2.0 GENERAL GEOLOGY

Joshimath is situated in close proximity of the Main central thrust (MCT), a dynamic geological region. This area is divided by several linear elastic shear zones, creating numerous tectonic slices of varying sizes. The area exposes rocks from the Central Crystalline Group, which are thrusted over the Garhwal Group of rocks, specifically the Chamoli and Pipalkoti Formations (**Figure 2**). (Geological Survey of India, 2024). This thrusting occurs along a major northerly dipping tectonic discontinuity known as the MCT (Geological Survey of India, 2024).

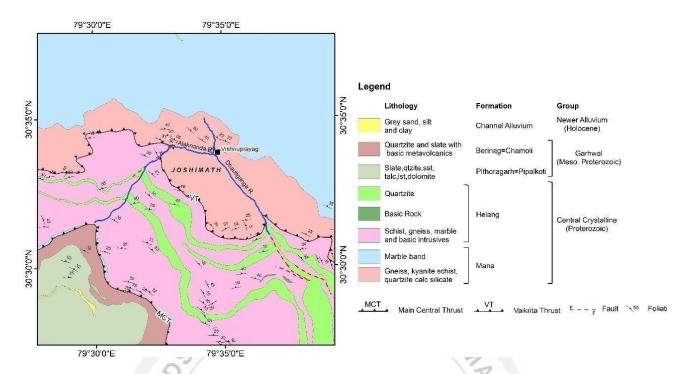
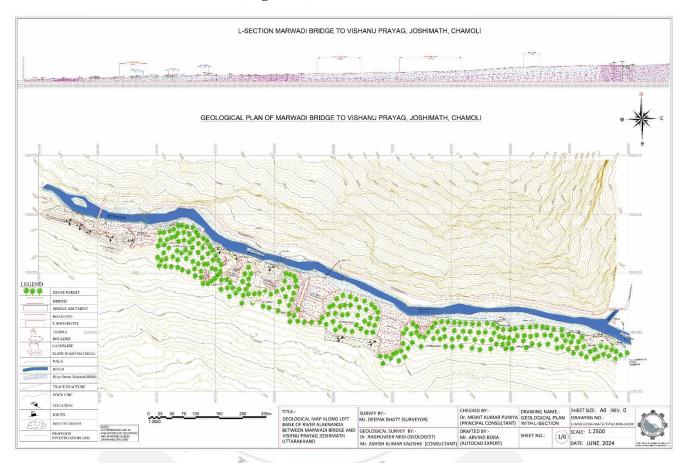


Figure 2: Regional geological map of the Joshimath area (Geological Survey of India, 2024).

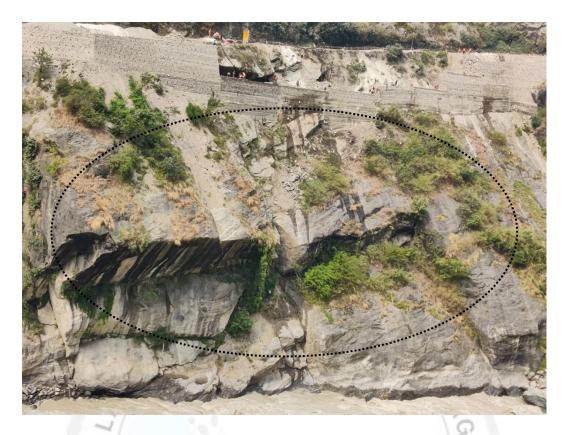
3.0 GEOLOGICAL MAPPING

The boundary of different surface features and lithology was demarcated with the help of Total Station (TS) and Differential Geographical positioning System (DGPS) (**Figure 3**). The geological field data were collected along the left bank of the River Alaknanda between Marwadi bridge and Vishnuprayag at different elevations in according to IS codes (IS 11315 part 1). The geological plan and L-sections (**Figure 4**) of the area have been prepared from the data collected in the field on scale of 1:2500 and 1:500. The L-sections have been prepared which are given in the annexures 2. The Geological map (Figure 4) also shows the major landslides along the left bank of the river.

Figure 3: Geological mapping using total station.

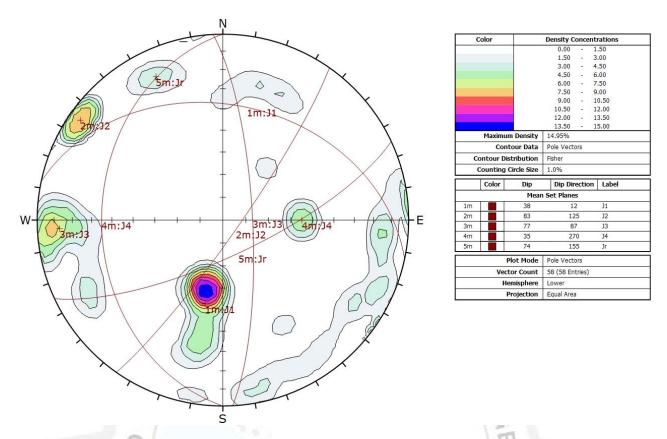

Geologically, study area is composed of slope wash material, river born material, and biotite - gneiss rock (**Figure 4**). The Proterozoic rock sequences of the Mana Formation, part of the Central Crystalline Group, are prominently visible along the Alaknanda River section, from Marwari Bridge to Vishnuprayag (Geological Survey of India, 2024). In the Joshimath area, the most evident rock type along this river section is biotite-gneiss, which belongs to the Mana Formation (**Figure 2**).

Biotite gneiss is a metamorphic rock characterized by its layered or banded appearance, resulting from the alignment of mineral grains under high pressure and temperature. Its primary components include biotite, quartz, and feldspar, often accompanied by other minerals such as garnet or sillimanite. The presence of biotite, a dark mica mineral, imparts a distinctive dark color and a shiny, flaky appearance.


The biotite-gneiss in the Joshimath area is slightly weathered (**Figure 5**) and exhibits minor jointing and fracturing. Consequently, the biotite-gneiss in this area is classified as having fair to good rock mass quality (**Figure 6**). The dip of foliation ranges between 17° and 61° with a dip direction between N032° and N358°. Joint set J2 dips between 72° and 89° with a dip direction

between N117° and N135°. Joint set J3 dips between 58° and 89° with a dip direction between N074° and N099°. Joint set J4 dips between 23° and 44° with a dip direction between N256° and N284°. There is also a random joint set dipping between 63° and 85° with a dip direction between N143° and N165° (**Figure 7**, Annexure 1).

The Biotite-Gneiss dips northerly, and the majority of the joint sets show trends along N-S, WNW-ESE, and NE-SW directions (**Figure 8**).


Figure 4: Geological Plan and L-section of Left Bank of the River Alaknanda between Marwadi Bridge and Vishnuprayag.

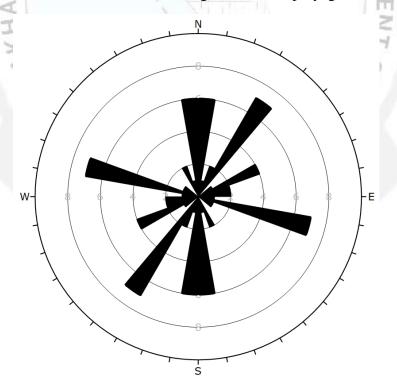

Figure 5: Field Photograph is showing biotite - gneiss evident along Alaknanda River, Near Marwadi Bridge Joshimath.

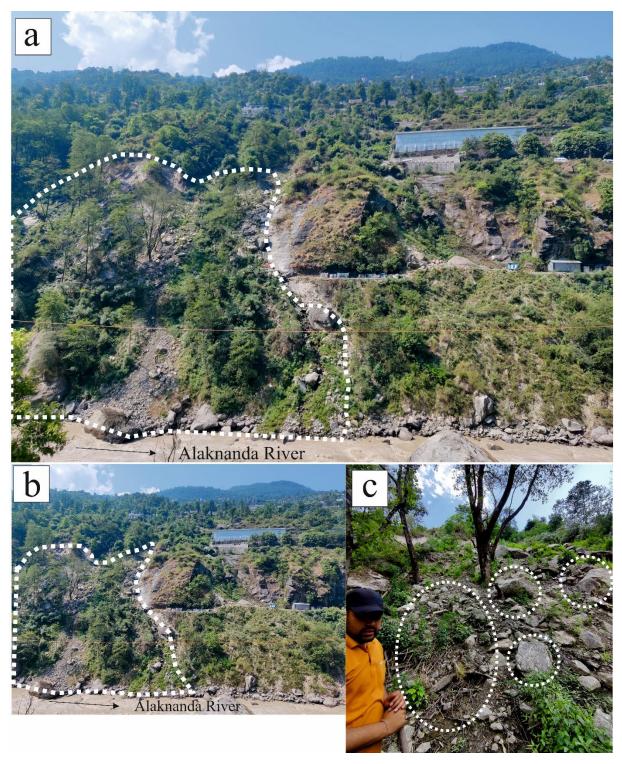
Figure 6: Field photograph is showing foliation plane (along geological hammer) of biotite - gneiss outcrop on left bank of the river Alaknanda, at Vishnuprayag.

Figure 7: Stereographic projections major discontinuity of left bank of River Alaknanda between Marwadi Bridge and Vishnuprayag.

Figure 8: Rose diagram showing trends of major discontinuity along left bank of River Alaknanda between Marwadi Bridge and Vishnuprayag

6.0 LANDSLIDES

The total mapped and surveyed stretch along the left bank of the Alaknanda River is approximately 2,733 meters in length. Within this stretch, seven landslides have been identified. Of these, three major landslides are situated directly on the riverbank, covering a total length of 566 meters. The outcrop of biotite-gneiss extends for about 687 meters, while large boulders along the left bank cover approximately 150 meters. The rest of the area is covered by forest and slope wash material. Immediate toe protection is required for the 566-meter length of the river stretch to prevent further toe erosion and landslide activity. The landslides are occurring in the old landslides/moraine deposits, which is mainly composed of boulders of gneiss, and soils.


6.1. Landslide Zone 1

The landslide observed near Marwadi Bridge on the left bank of the River Alaknanda is situated between chainage 402 and 520 meters. The slope is experiencing failure in the 340° N direction through a rotational mode of failure. The slope material predominantly consists of old landslide deposits or moraine, which are primarily composed of large boulders of biotite-gneiss intermixed with soil (**Figure 9**).

The affected area covers approximately 8988 square meters (**Table 1**), with a maximum length of 125 meters. The primary factors contributing to the instability of this slope include toe erosion and the impact of drainage that traverse the middle and boundary of the slide zone.

Table 1: Area of different landslide zones, along left Bank of River Alaknanda between Marwadi Bridge and Vishnuprayag, Joshimath.

S.N.	Landslide zones	Area (m²)
1	Landslide zone 1	8988.614
2	Landslide zone 2	1184.047
3	Landslide zone 3	370.84
4	Landslide zone 4	3811.628
5	Landslide zone 5	1731
6	Landslide zone 6	19729.64
7	Landslide zone 7	23103.427
9	Area of Riverside zones	51821.681
10	Others landslide zones	7097.515
11	Total area effected by landslide	58919.196

Figure 9: Field photograph showing (a) and (b) landslide zone 1, and (c) boulders and debris material of the affected zone.

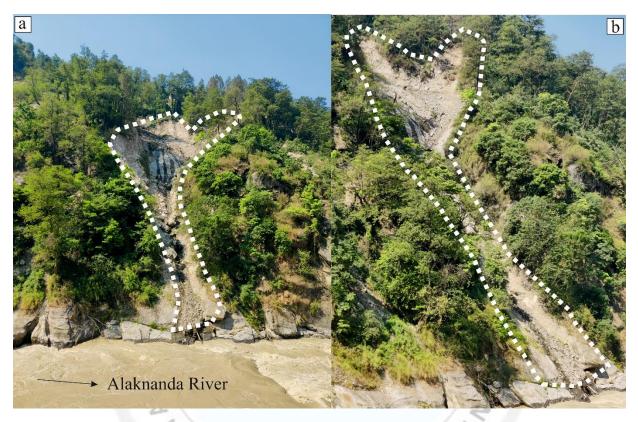
6.2 Landslide No 2

A small debris slide, with a length of 54 meters and a width of 24 meters, covering an area of 1184 square meters (**Table 1**), was observed along the left bank of the River Alaknanda (Figure 4). The slid material consists of boulders, debris, and soil.

6.3 Landslide No. 3

A debris landslide in the old landslide deposits may be triggered during the monsoon, evidenced by signs of running water. However, during the site visit, no flowing or dripping water was observed (**Figure 10**). The slide encompasses an area of 370 square meters (**Table 1**), with a maximum length of 54 meters and a width of 24 meters.

Biotite gneiss is visible at the toe of the slide, providing protection against river-induced toe erosion. The landslide material primarily consists of old landslide or moraine deposits, mainly composed of biotite-gneiss boulders, debris, and soil. The slide zone is predominantly surrounded by a lush green forest, adding to the overall stability and ecological context of the area (**Figure 10**).


Figure 10: Filed photograph showing landslide zone 3, left bank of River Alaknanda, Joshimath.

6.4 Landslide No 4

Another debris landslide occurred along the left bank of the River Alaknanda between Marwadi Bridge and Vishnuprayag (**Figure 11**). The landslide zone is composed of biotite gneiss, and debris of old landslide/moraine. These deposits primarily consist of boulders, debris, and soil.

The slide zone covers an area of 3811 square meters (**Table 1**), with a length of 101 meters and a width of 65 meters.

The slope also contains biotite-gneiss rock below the crown and at the toe (**Figure 11**). The main factors affecting the slope stability include the steepness of the slope and the drainage system passing through the middle of the slope.

Figure 11: Field photograph showing landslide zone 4 along left bank of river Alaknanda between Marwadi Bridge and Vishnuprayag, Joshimath.

6.5 Landslide No 5

A debris slide covering an area of 1731 square meters (**Table 1**), with a maximum length of 62 meters and a width of 61 meters, is observed along the left bank of the River Alaknanda between Marwadi Bridge and Vishnuprayag (**Figure 12**). The landslide zone is primarily protected by a biotite-gneiss outcrop at the toe (Figure 12). Although the rock outcrop shows potential for planar and wedge failure, no signs of rock failure are currently observed on the slope. The stability of the slope is thus maintained, but continuous monitoring is recommended to detect any changes that may indicate future instability. Also the landslide zone (**Figure 12**) is suggested to mitigate in order to prevent further slope failure.

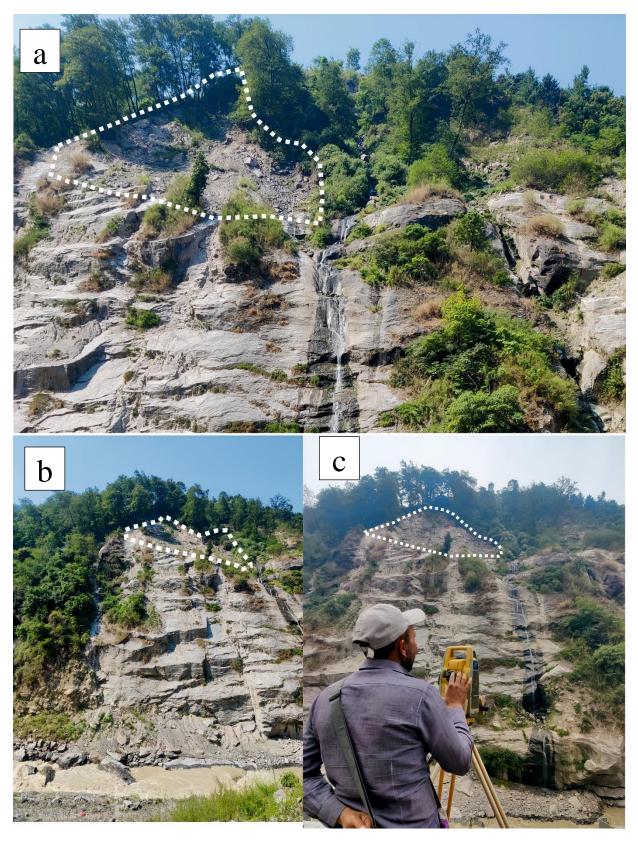


Figure 12: Field photograph showing landslide zone 5along left bank of River Alaknanda, Joshimath.

6.6 Landslide No 6

A debris slide is observed along the left bank of the River Alaknanda, covering an area of 19,729 square meters (**Table 1**), with a maximum length of 209 meters. The slope is primarily composed of debris material from old landslide or moraine deposits and is failing through a rotational mode of failure (**Figure 13**). The potential causes of this failure include toe erosion and drainage systems passing through the slope. Treatment of the slope is essential to prevent future slope failure and ensure the stability of the area.

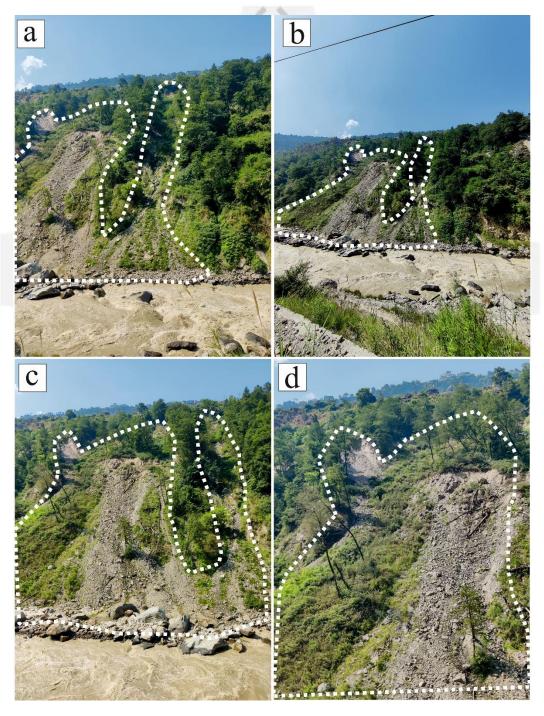


Figure 13: Filed photograph of the landslide zone 06, along left bank of the River Alaknanda

6.7 Landslide No 7

Another debris slide is observed near Vishnuprayag on the left bank of the River Alaknanda, between chainage 1583 to 1853 meters (**Figure 4**; **Figure 14**). The slide area covers 23,103 square meters (**Table 1**), with a chainage length of 263 meters and a maximum length of 209 meters. The slide material primarily consists of boulders, rock debris, and soil. Toe erosion is identified as one of the primary factors accelerating slope instability.

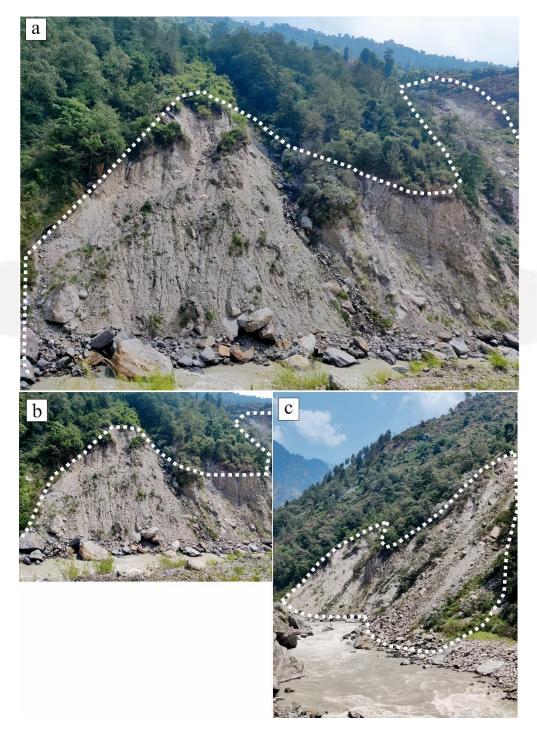


Figure 14: Field photograph showing landslide zone 7, along left bank of River Alaknanda, near Vishnupryag.

7.0 CONCLUDING REMARKS

The surveyed 2,733-meter stretch along the left bank of the Alaknanda River reveals significant slope instability, with seven identified landslides. Three major landslides, directly impacting the riverbank over 566 meters, highlight urgent need of mitigations. These landslides, primarily in old landslides/moraine deposits that mainly consist of biotite-gneiss and soil, are exacerbated by toe erosion and drainage issues. Key zones include the unstable 8988-square-meter area near Marwadi Bridge, a 23,103-square-meter slide near Vishnuprayag, and others ranging from 370 to 19,729 square meters. The total area affected by the landslides along the left bank of the Alaknanda River between Marwadi Bridge and Vishnuprayag is 58,919 square meters, out of which 51,821.6 square meters are in three major slide zones that are directly along the riverbank. Immediate toe protection and slope stabilization measures are essential to prevent further erosion and ensure long-term stability.

It is also imperative to conduct comprehensive geotechnical and geophysical investigations, including drilling, before designing toe protections and mitigation measures for the landslide zones. This approach ensures long-term stability. The following geotechnical analysis and geophysical investigations should be conducted before implementing any mitigation measures for slope failures and toe protection: Electrical Resistivity Tomography (ERT), Seismic Reflection Tomography (SRT), and Multi-Channel Analysis of Surface Waves (MASW). These investigations should cover a length of 1,040 meters, as per the proposed investigation lines in Figure 4, and reach a depth of 50 meters at the landslide sites.

- Tri-axial test/Direct Shear test of the of soil and rock [IS 2720 Part 11; IS 13047 /IS 2720 part 13 and 39 (Part 1 and 2)]
- Bulk and dry density of the soil and rocks (IS 2720 Part 3_1; IS 13030)
- Porosity and Permeability test of the soil and rock (IS 2720 part 17; IS 5529 part 1 and 2; IS 13030)
- Uniaxial compressive strength of (IS 2720 Part 10; IS 9143)
- Grain size analysis of the soil (IS 2720 Part 4)
- Atterberg limit of the soil (IS 2720 Part 5)

References

Bera, B., Saha, S., & Bhattacharjee, S. (2023). Sinking and sleeping of Himalayan city Joshimath. Quaternary Science Advances, 12, 100100.

Annexure 1

L01 (Near Marwadi Bridge)				
	Set number	J1	J2	
	Dip Amount	35	80	
	Dip Direction	15	330	
suc	Persistence (m)	10	1-2	
Joint Descriptions	Spacing (cm)	40 - 100	>200	
Jo scri	Aperture (mm)	Tight	Open	
De	Roughness	Rough Irregular		
ous	Rock Type	Gnei	ss	
ipti	Strength	Moderate to Strong		
escr	No. of joints sets	2		
S De	Degree of Weathering	Slightly weathered		
Rock Mass Descriptions	Geological Structure	Massive to Slightly Jointed		
ck N	Water inflow	Flowing		
Ro	RQD	60-70	0%	

L02 (Near Marwadi Bridge)						
	Set number J1 J2 J3					
	Dip Amount	34	75	60		
	Dip Direction	25	150	85		
suc	Persistence (m)	2-3	1-2	1-2		
Joint Descriptions	Spacing (cm)	30- 100	> 200	>200		
Jos	Aperture (mm)	Tight	Tight	Open		
De	Roughness	Rough Irregular				
suc	Rock Type	112	Gneiss			
iptic	Strength	Moderate to High				
scr	No. of joints sets	3				
S De	Degree of Weathering	Sligtly weathered				
Rock Mass Descriptions	Geological Structure	Sliglty Jointed				
ck I	Water inflow	Damp				
Ro	RQD	60-70%				

L03 (Near Marwadi Bridge)						
	Set number	J1	J2	Ј3		
	Dip Amount	45	83	52		
	Dip Direction	10	125	10		
su	Persistence (m)	4	1-2	2-3		
Joint criptio	Spacing (cm)	30 to 100	> 200	>200		
Joint Descriptions	Aperture (mm)	Tight	Tight	Tight		
Ď	Roughness	Rough Irregular				
S	Rock Type	Gneiss				
otion	Strength	Strong				
scrij	No. of joints sets	3				
s De	Degree of Weathering	Slightly weathered				
Mas	Geological Structure	Slightly Jointed,				
Rock Mass Descriptions	Water inflow	Flowing				
~	RQD		65-75%	S		
	王	1	ho /	Z		

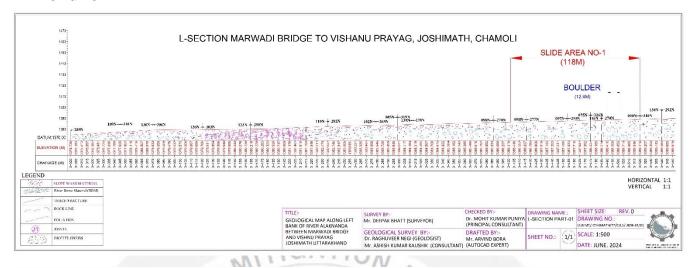
	L04 (Near Marwadi Bridge)					
	Set number	J1	Ј2	J3		
	Dip Amount	28	70	60		
	Dip Direction	15	305	10		
suc	Persistence (m)	10	0.5-1	0.5-1		
Joint	Spacing (cm)	30 to 80	>200	>200		
Joint Descriptions	Aperture (mm)	Tight	Open	Open		
	Roughness	Rough Irregular				
suc	Rock Type		Gneiss			
iptic	Strength	Moderate to High				
escr	No. of joints sets	3				
S De	Degree of Weathering	Slightly weathered				
Mas	Geological Structure	Slightly jointed				
Rock Mass Descriptions	Water inflow		Dry			
R	RQD	60-70%				

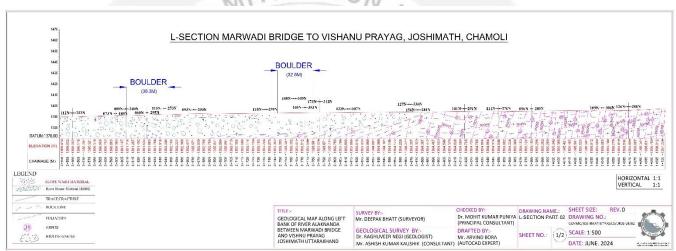
	L05 (Near Marwadi Bridge)					
Set nu	umber	J1	J2	J3	J4	
Dip A	mount	27 75 80 64				
Dip D	Pirection	15	340	92	190	
su	Persistence (m)	1	1	1-2	1-2	
riptio	Spacing (cm)	30-100	>200	>200	>200	
Descr	Aperture (mm)	Tight	Partially Open	Partially Open	Partially Open	
Joint Descriptions	Roughness	11	Rou	gh Irregular	_ L	
	Rock Type	MILL	MATTON	Gneiss		
tio	Strength	Moderate to Strong				
crip	No. of joints sets	3				
Rock Mass Descriptions	Degree of Weathering	Slightly weathered				
Ma	Geological Structure	No.	Mode	rately jointed		
c k]	Water inflow	- 0		Dry		
Ro	RQD	0.		45-55%		

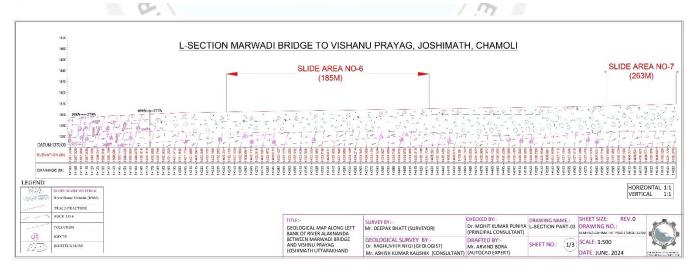
\simeq	KQD			43-33%	
	Z	1		3	
	H	L06 (No	ear Marwadi Brid	ge)	
	Set number	J1	J2	Ј3	J4
	Dip Amount	30	75	70	70
	Dip Direction	10	320	85	160
su	Persistence (m)	1	1-2	1-2	1-3
Joint criptio	Spacing (cm)	>200	>200	>200	>200
Joint Descriptions	Aperture (mm)	Tight	Partially Open	Moderately Wide	Moderately Wide
	Roughness	Rough Irregular			
us	Rock Type	Gneiss			
ptio	Strength	Moderate to Strong			
scri	No. of joints sets	3			
ss De	Degree of Weathering		Sliş	ghtly weathered	
Mas	Geological Structure	Slightly Jointed			
Rock Mass Descriptions	Water inflow	Dry			
R	RQD	50-60%			

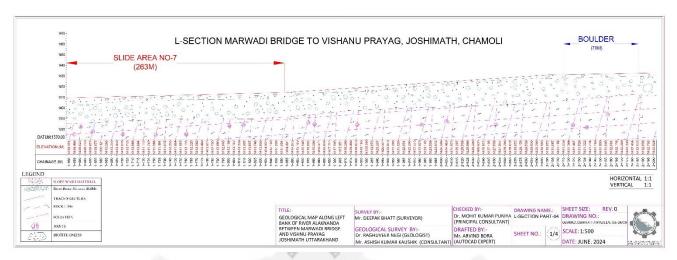
	L07 (Near Marwadi Bridge)					
	Set number	J1	J2	Ј3	J4	
	Dip Amount	30	80	85	55	
	Dip Direction	15	350	80	180	
su	Persistence (m)	1	1	1-2	1-2	
Joint	Spacing (cm)	30-70	>200	>200	>200 cm	
Jo	Aperture (mm)	tight	tight	open	open	
De	Roughness	Rough Irregular				
su	Rock Type		Gne	iss		
ptio	Strength	GATION Strong				
Rock Mass Descriptions	No. of joints sets	AND 4				
ss De	Degree of Weathering		Slightly w	eathered		
Mas	Geological Structure		Slightly.	Jointed		
cock	Water inflow		Dr	y		
RQD 60-70%						

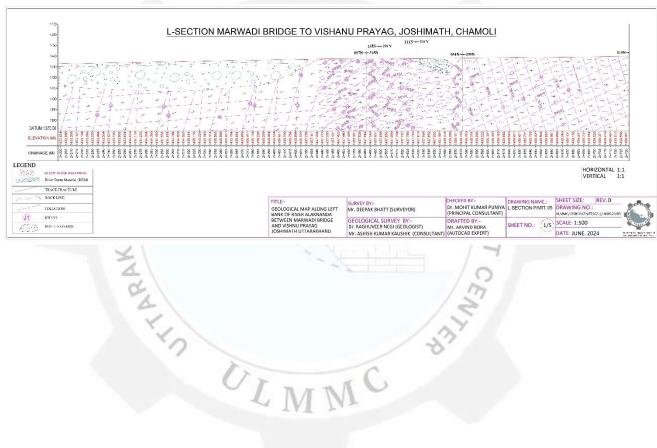
	KŲD	60-70%				
	Z	3				
	V T	L09	4 / 5			
	Set number	J1	J2 / ¬	J3		
	Dip Amount	320	75	65		
	Dip Direction	15	275	15		
su	Persistence (m)	4-5	4-5	9-10		
Joint criptio	Spacing (cm)	40-90	>200	>200		
Joint Descriptions	Aperture (mm)	Tight	Partially open	Partially open		
Ã	Roughness	TAT P.	Rough Irregul	ar		
su	Rock Type		Gneiss			
ptio	Strength		Strong			
escri	No. of joints sets		3			
ss De	Degree of Weathering		Slightly weathered			
Rock Mass Descriptions	Geological Structure	Slightly Jointed				
ock	Water inflow		Damp			
X	RQD	60-70%				

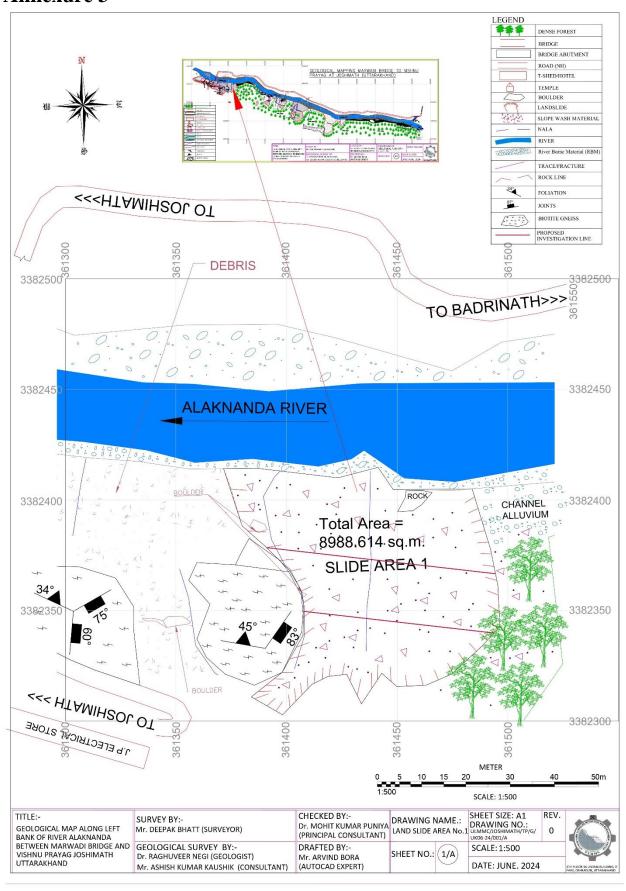

L10					
Set number J1 J2					
	Dip Amount	30	75		
	Dip Direction	15	270		
suc	Persistence (m)	10	1-2		
Joint	Spacing (cm)	40-100	>200		
Joint Descriptions	Aperture (mm)	Tight	open		
De	Roughness	Rough Irregular			
	Rock Type	Gneiss			
s s	Strength	Moderate to Strong			
fass	No. of joints sets	2			
Rock Mass Descriptions	Degree of Weathering	Slightly weathere	d		
Roc Jesc	Geological Structure	Slightly jointed			
	Water inflow	Flowing			
	RQD	50-55%			
	2/1.	72			

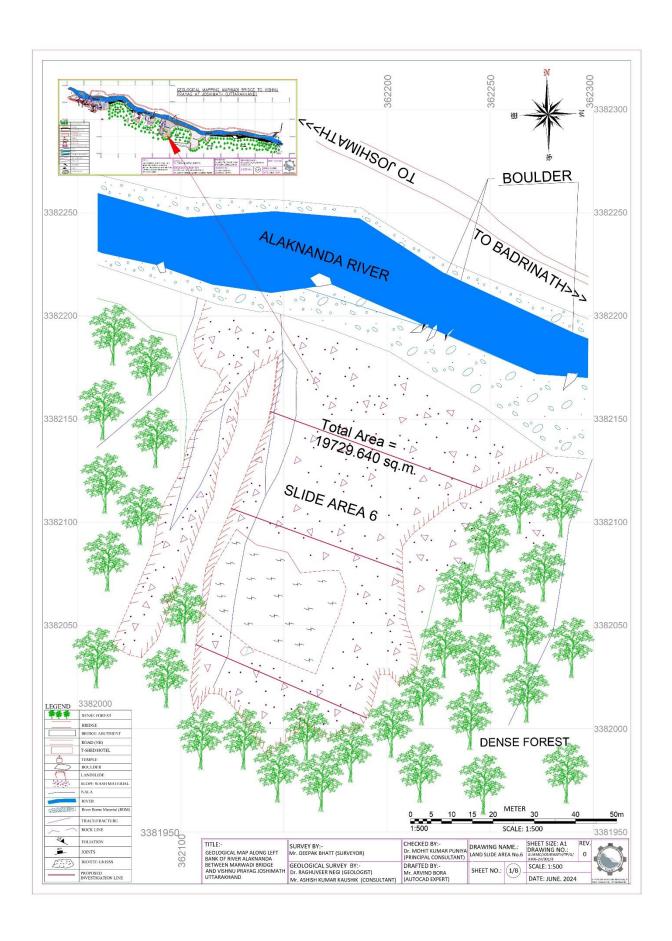

	golf / Vo		17		
	4 8.0	Y			
	Set number	J1	J2	J3	
	Dip Amount	35	85	85	
	Dip Direction	5	295	350	
suc	Persistence (m)	1-5	1-5	10	
Joint Descriptions	Spacing (cm)	>200	>200	>200	
Jo	Aperture (mm)	Tight	Wide	Wide	
Ď	Roughness	Rough Irregular			
suc	Rock Type	Gneiss			
iptic	Strength	Moderate to Strong			
escri	No. of joints sets	3			
S De	Degree of Weathering	Slightly weathered			
Rock Mass Descriptions	Geological Structure	Slightly jointed			
ck	Water inflow	Flowing			
R	RQD	60-65%			

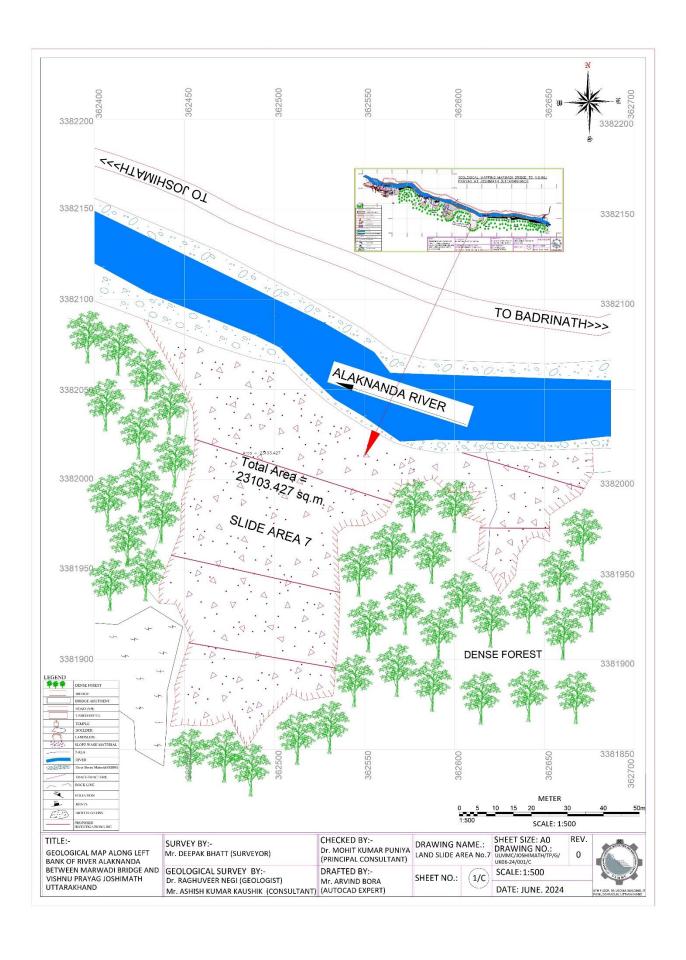

L13 (Vishnuprayag)							
Set number		J1	J2	Ј3			
Dip Amount		40	55	65			
Dip Direction		10	330	200			
1S	Persistence (m)	1	1-2	1-2			
Joint Descriptions	Spacing (cm)	>200	>200	>200			
Jo	Aperture (mm)	Tight	Partial Open	Open			
Q	Roughness	Rough Irregular					
ν ₂	Rock Type	Gneiss					
otion	Strength	Strong					
scrip	No. of joints sets	3					
s De	Degree of Weathering	Slightly weathered					
Mas	Geological Structure	Slightly Jointed					
Rock Mass Descriptions	Water inflow	Dry					
	RQD	70-75%					


L14 (Vishnuprayag)							
Set number		J1	J2	J3			
Dip Amount		55	80	85			
Dip Direction		15	330	10			
Joint Descriptions	Persistence (m)	10	1-2	2-3			
	Spacing (cm)	>200	>200	>200			
	Aperture (mm)	Tight	Partially open	open			
Ď	Roughness	Rough Irregular					
ns	Rock Type	Gneiss					
ptio	Strength	Strong					
scri	No. of joints sets	3					
. De	Degree of Weathering	Slightly weathered					
Rock Mass Descriptions	Geological Structure	Slightly Jointed					
	Water inflow	Flowing					
Roc	RQD	60-70%					


Annexure 2







Annexure 3

